منابع مشابه
Classroom note: Almost-isosceles right-angled triangles
We provide an elementary method to show that there exist infinitely many right-angled triangles with integral sides in which the lengths of the two non-hypotenuse sides differ by 1. The method also enables us to construct all such right-angled triangles recursively. 1. Introduction There does not exist any isoceles right-angled triangle with integral sides. Does there exist a right-angled trian...
متن کاملAn Extension of the Fundamental Theorem on Right-angled Triangles
{3, 4, 5} is perhaps the most famous Pythagorean Triple with interest in such triples dating back many thousands of years to the ancient people of Mesopotamia. In this article, we shall consider such triples, with the restriction that the elements of these triples must not have any common factors they are Primitive Pythagorean Triples (PPTs). In particular, we shall consider the question of how...
متن کاملSurface Subgroups of Right-Angled Artin Groups
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group A(K) has such a subgroup if its defining graph K contains an n-hole (i.e. an induced cycle of length n) with n ≥ 5. We construct another eight “forbidden” graphs and show that every graph K on ≤ 8 vertices either contains one of our examples, or co...
متن کاملA Complex for Right-angled Coxeter Groups
We associate to each right-angled Coxeter group a 2-dimensional complex. Using this complex, we show that if the presentation graph of the group is planar, then the group has a subgroup of finite index which is a 3-manifold group (that is, the group is virtually a 3-manifold group). We also give an example of a right-angled Coxeter group which is not virtually a 3-manifold group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 1934
ISSN: 0028-0836,1476-4687
DOI: 10.1038/133106c0